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Abstract

This report proofs that discriminative Restricted Boltzmann Machines
(RBMs) are universal approximators for discrete data by adapting existing
universal approximation proofs for generative RBMs.
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1 Introduction

A discriminative Restricted Boltzmann Machine (RBM) models is a conditional variant of the
RBM [1, 2, 4] that models the conditional distribution p(y|x) as

p(y|x) =
1

Z(x)

∑
z

exp(xTWz + zTVy + bTz + cTy), (1)

where Z(x) represents the partition function

Z(x) =
∑
y′

∑
z′

exp(xTWz′ + z′TVy′ + bTz′ + cTy′). (2)

In this note, we proof the following theorem for discriminative RBMs:

Universal Approximation Theorem. For data x ∈ X = {0, 1}D, a discriminative RBM
can represent any conditional distribution p(y|x) arbitrarily well in terms of Kullback-Leibler
divergence.

Since discrete data can be expressed exactly in terms of a binary representation (e.g., using
a 1-of-D representation), the theorem applies to discrete data, too. The proof of the above the-
orem is an adaptation of an earlier proof on the representational power of generative RBMs [3].

2 Proof

Denote potentials by F (x,y, z), the conditional distribution modeled by a discriminative RBM
can be written as

p(y|x) =

∑
z F (x,y, z)∑

y′,z′ F (x,y′, z)′
=

∑
z exp(xTWz + zTVy + bTz + cTy)∑

y′
∑

z′ exp(xTWz′ + z′TVy′ + bTz′ + cTy′)
, (3)

where we assume that x is a binary vector, and y is a 1-of-K vector. We denote the discrimi-
native RBM that has one additional hidden unit with parameters w, v, and b by pwvb(y|x):

pwvb(y|x) =
(1 + exp(wTx + vTy + b))

∑
z F (x,y, z)∑

y′(1 + exp(wTx + vTy′ + b))
∑

z′ F (x,y′, z′)
. (4)

Let (x̃, ỹ) be an arbitrary (x,y)-pair for which we wish to change increase the conditional
probability p(ỹ|x̃). Also, we define the parameters ŵ = a(x̃ − 1

2), v̂ = a(ỹ − 1
2), and b̂ =

1



−ŵTx̃− v̂Tỹ + λ with a, λ ∈ R. For this setting of the parameters, we investigate the limit of
the term induced by the new hidden unit as the variable a goes to infinity. In particular, we
find the limits

lim
a→∞

(1 + exp(ŵTx̃ + v̂Tỹ + b̂)) = lim
a→∞

(1 + exp(λ)) = 1 + exp(λ), (5)

∀x 6= x̃ : lim
a→∞

(1 + exp(ŵTx + v̂Tỹ + b̂)) = lim
a→∞

(
1 + exp

(
a

(
x̃− 1

2

)T

(x− x̃) + λ

))
= 1,

(6)

∀y 6= ỹ : lim
a→∞

(1 + exp(ŵTx̃ + v̂Ty + b̂)) = lim
a→∞

(
1 + exp

(
a

(
ỹ − 1

2

)T

(y − ỹ) + λ

))
= 1,

(7)

∀x 6= x̃,y 6= ỹ : lim
a→∞

(1 + exp(ŵTx + v̂Ty + b̂)) =

lim
a→∞

(
1 + exp

(
a

(
x̃− 1

2

)T

(x− x̃) + a

(
ỹ − 1

2

)T

(y − ỹ) + λ

))
= 1.

(8)

In the derivation of these limits, we use the fact that x, x̃, y, and ỹ are binary vectors. It is
not obvious how to obtain the same limits for the continuous case, i.e., when x ∈ RD. The key
observation is that in the limit when a goes to infinity, for this specific choice of parameters for
the new hidden unit, the contribution of the new hidden unit to the product over all hidden
units is always 1, except for the particular pair (x̃, ỹ) we picked. In other words, the hidden
unit has no effect on the unnormalized conditional probabilities, except for the (x̃, ỹ) pair1.

To formalize this, we can consider the behavior of the conditional distribution pŵv̂b̂(y|x̃) in
the limit when a goes to infinity. We first work out the limit for the ∀y 6= ỹ case, to find

∀y 6= ỹ : lim
a→∞

pŵv̂b̂(y|x̃) = lim
a→∞

(1 + exp(ŵTx̃ + v̂Ty + b̂))
∑

z F (x̃,y, z)∑
y′(1 + exp(ŵTx̃ + v̂Ty′ + b̂))

∑
z′ F (x̃,y′, z′)

(9)

=

∑
z F (x̃,y, z)

(1 + exp(λ))
∑

z′ F (x̃, ỹ, z′) +
∑

y′ 6=ỹ

∑
z′ F (x̃,y′, z′)

(10)

=
1

1 + exp(λ)
∑

z F (x̃,ỹ,z)∑
y′

∑
z′ F (x̃,y′,z′)

∑
z F (x̃,y, z)∑

y′
∑

z′ F (x̃,y′, z′)
, (11)

where we use the fact that ỹ is an element in the sum over y′. Noting that p(y|x) =∑
z F (x,y,z)∑

y′
∑

z′ F (x,y′,z′) , we obtain the following limit

∀y 6= ỹ : lim
a→∞

pŵv̂b̂(y|x̃) =
p(y|x̃)

1 + exp(λ)p(ỹ|x̃)
. (12)

Similarly, we can derive

lim
a→∞

pŵv̂b̂(ỹ|x̃) =
(1 + exp(λ))p(ỹ|x̃)

1 + exp(λ)p(ỹ|x̃)
, (13)

∀x 6= x̃ : lim
a→∞

pŵv̂b̂(ỹ|x) = p(ỹ|x), (14)

∀x 6= x̃,y 6= ỹ : lim
a→∞

pŵv̂b̂(y|x) = p(y|x). (15)

Hence, we can arbitrarily increase the conditional probability p(ỹ|x̃) for a pair (x̃, ỹ) by choos-
ing the appropriate λ, whilst uniformly decreasing the other conditional probabilities p(y|x̃)
through the normalization factor. Perhaps surprisingly, this does not affect the conditional

1We note here that there is an effect on other conditional probabilities through the normalization term. We
explore this effect below.
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probabilities p(y|x) for any other data point x 6= x̃. We can use this property to construct a
discriminative RBM that exactly matches each possible distribution p(y|x) by repeating the
procedure below for each of the exponential number of x’s.

Denote the discriminative RBM with i+1 hidden units as pi, and define p0 as a discriminative
RBM in which all weights and biases (i.e., w0, v0, and b0) are set to 0. Hence, p0 defines a
uniform distribution over y for ∀x; for a particular x̃, we obtain that p0(y|x̃) = 1

K . Now, we
index all k possible label vectors y that have non-zero probability (given x̃) by integers from
1 to k ≤ K (which gives us y1,y2, . . . ,yk), and sort them according to the true conditional
distribution we wish to obtain such that

0 < p(y1|x̃) ≤ p(y2|x̃) ≤ · · · ≤ p(yk|x̃). (16)

Next, we define the second hidden unit with parameters w1 = a1(x̃− 1
2), v1 = a1(y1 − 1

2), and
b1 = −wT

1 x̃−wT
1 y1 + λ1. For this specification of the parameters for the second hidden unit,

we have shown above that

lim
a1→∞

p1(y1|x̃) =
(1 + exp(λ1))

1
K

1 + exp(λ1)
1
K

, and (17)

∀i > 1 : lim
a1→∞

p1(yi|x̃) =
1
K

1 + exp(λ1)
1
K

. (18)

Indeed, we can make p1(y1|x̃) arbitrarily close to 1 by increasing λ1, whilst maintaining a
uniform distribution over y2,y3, . . . ,yk. In the next step, we can similarly introducte a third
hidden unit with parameters w2, v2, and b2, and set the corresponding λ2 in such a way that
p2(y2|x̃)
p2(y1|x̃) = p(y2|x̃)

p(y1|x̃) . To see that this is possible, note (1) that p(y2|x̃)
p(y1|x̃) ≥ 1 because of the ordering

and p1(y2|x̃)
p1(y1|x̃) ≤ 1 because it was impossible to decrease p1(y1|x̃), and thus p(y2|x̃)

p(y1|x̃) ≥
p1(y2|x̃)
p1(y1|x̃) ,

and note (2) that we can arbitrarily increase p2(y2|x̃) whilst uniformly multiplying the other
conditional probabilities by a constant factor. We can repeat this procedure for the consecutive
values λ3, λ4, . . . , λk. Note that once we set a ratio correctly, the ratio is not altered by later
hidden unit additions. Hence, the result of this procedure is a discriminative RBM pk(y|x)
that – for our particular x̃ – correctly preserves log-ratios for all label vectors with non-zero
probability

pk(y2|x̃)

pk(y1|x̃)
=
p(y2|x̃)

p(y1|x̃)
,
pk(y3|x̃)

pk(y2|x̃)
=
p(y3|x̃)

p(y2|x̃)
, . . . ,

pk(yk|x̃)

pk(yk−1|x̃)
=

p(yk|x̃)

p(yk−1|x̃)
. (19)

At the same time, for the label vectors with zero probability yk+1, . . .yK , the discriminative
RBM pk(y|x̃) still specifies a uniform distribution, i.e., pk(yk+1|x̃) = · · · = pk(yK |x̃). Since
all ratios are correct, all conditional probabilities pk(y1|x̃), . . . , pk(yk|x̃) only still need to be
multiplied by a constant, i.e., the remaining probability mass in the uniform distribution needs
to be distributed among all label vectors with non-zero probabilities. Specifically, we can see
that pk(y1|x̃) = νp(y1|x̃), pk(y2|x̃) = νp(y2|x̃), . . . , pk(yk|x̃) = νp(yk|x̃), where the value of ν
is given by ν = 1− (K − k)pk(yK |x̃). In addition, because we never changed any of the ratios
that involve the label vector y1 after we fixed λ1, we also have

for k > i ≥ K :
pk(y1|x̃)

pk(yi|x̃)
=
p1(y1|x̃)

p1(yi|x̃)
= 1 + exp(λ1). (20)

As a result, we obtain the equations

for k > i ≥ K : pk(y1|x̃) = p(y1|x̃)[1− (K − k)pk(yi|x̃)] = (1 + exp(λ1))p
k(yi|x̃), (21)

for 0 < i ≤ k : pk(yi|x̃) = pk(y1|x̃)
1 + exp(λi)

1 + exp(λ1)
= (1 + exp(λ1))p

k(yK |x̃). (22)
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Solving the above equations, we obtain

for k > i ≥ K : (1 + exp(λ1))p
k(yi|x̃) = p(y1|x̃)

[
1− (K − k)pk(yi|x̃)

]
(23)

p(y1|x̃) = [(1 + exp(λ1)) + (K − k)p(y1|x̃)] pk(yi|x̃) (24)

pk(yi|x̃) =
p(y1|x̃)

1 + exp(λ1) + (K − k)p(y1|x̃)
, (25)

and filling in this result into the RHS of Equation 22, we obtain

for 0 < i ≤ k : pk(yi|x̃) = p(y1|x̃)
1 + exp(λi)

1 + exp(λ1) + (K − k)p(y1|x̃)
(26)

= p(yi|x̃)
1 + exp(λ1)

1 + exp(λ1) + (K − k)p(y1|x̃)
, (27)

where we made use of the fact that 0 < i ≤ k, 0 < j ≤ k : pk(yi|x̃)
pk(yj |x̃)

= p(yi|x̃)
p(yj |x̃) . From the two

solutions above, it is straightforward to see that pk(yi|x̃) approaches p(yi|x̃) in the limit where
λ1 goes to infinity. Hence, we can take the limit λ1 → ∞ to approach the desired conditional
distribution p(y|x̃).

We can express this by investigating the Kullback-Leibler divergence KL(p(y|x̃)||pk(y|x̃))
between the distribution we aim to obtain and the discriminative RBM distribution

KL(p(y|x̃)||pk(y|x̃)) =
K∑
i=1

p(yi|x̃) log p(yi|x̃)−
K∑
i=1

p(yi|x̃) log pk(yi|x̃) (28)

=

k∑
i=1

p(yi|x̃) log p(yi|x̃)−
k∑
i=1

p(yi|x̃) log pk(yi|x̃) (29)

= −
k∑
i=1

p(yi|x̃) log(1 + exp(λ1)) +
k∑
i=1

p(yi|x̃) log (1 + exp(λ1) + (K − k)p(y1|x̃))

(30)

=

k∑
i=1

p(yi|x̃) log

(
1 +

(K − k)p(y1|x̃)

1 + exp(λ1)

)
. (31)

We can investigate the Kullback-Leibler divergence in the limit where λ1 goes to infinity, to
find

lim
λ1→∞

KL(p(y|x̃)||pk(y|x̃)) = lim
λ1→∞

k∑
i=1

p(yi|x̃) log

(
1 +

(K − k)p(y1|x̃)

1 + exp(λ1)

)
= 0. (32)

Hence, for a particular data point x̃, the discriminative RBM pk(y|x̃) can approach the con-
ditional distribution p(y|x̃) arbitrarily well in terms of Kullback-Leibler divergence (by letting
λ1 go to infinity).

Note that we have already shown that the above procedure only alters p(y|x̃) for the specific
data point x̃, but that it does not alter p(y|x) for ∀x 6= x̃ (in Equation 14 and 15). After
adapting the discriminative RBM for a particular data point x̃, the distribution over y for all
other data vectors x 6= x̃ is thus still uniform. Hence, we can repeat the above procedure for
every x ∈ X = {0, 1}D.
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