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Abstract—Depth sensors such as Kinect fail to find the depth
of transparent objects which makes 3D reconstruction of such
objects a challenge. The refinement algorithms for Kinect depth
maps either do not address transparency or they only provide
sparse depth on such objects which is inadequate for dense
3D reconstruction. In order to solve this problem, we propose
a fully-connected CRF based hybrid refinement algorithm. We
incorporate stereo cues from cross-modal stereo between IR
and RGB cameras of the Kinect and Kinect’s depth map. Our
algorithm does not require any additional cameras and still
provides dense depth estimations of transparent objects and
specular surfaces with high accuracy.

I. INTRODUCTION

The Kinect provides real-time and high resolution depth
maps that are adequate for many tracking and object recogni-
tion applications [1]. However, the lack of its depth measure-
ments on specular, absorbing and transparent surfaces affect
many other tasks such as 3D reconstruction and virtual-view
rendering. Such surfaces are common in everyday household
objects of which depth can not be measured by the Kinect [2].
The recently introduced Kinect 2, available in 2014, provide
high accuracy depth maps based on its time-of-flight (ToF)
depth sensor. ToF sensors can also not measure depth on
transparent objects [3]. In order to increase the accuracy of
Kinect on challenging surfaces, many algorithms have been
proposed. Most of those studies are based on different types
of bilateral filters which smooths the depth image using the
guidance of the color image and fills the unknown depth
locations [5]–[9]. Using bilateral filtering for the inpainting of
the Kinect depth maps can correct the missing depth values on
specular and absorbing surfaces as long as there are sufficient
depth measurements around the unknown locations. However,
these algorithms fail to recover the depth of transparent objects
since there is no depth information on transparent surfaces.
Chiu et al. [2] proposed using cross-modal stereo between IR
and RGB cameras of the Kinect to obtain depth cues for the
transparent objects in Kinect depth maps. Their algorithm can
find sparse depth estimations but is inadequate for dense 3D
reconstructions. The main reason for sparsity is the structural
difference of the IR and RGB images. In their later work [4],
they achieve better results by learning a mapping between
color channels of RGB image and IR image. However the
resulting depth maps are still sparse and not adequate for
dense representation of the transparent objects. None of these
works considered pairwise inference between pixels such as
global energy minimization to increase the accuracy on the
challenging surfaces. There are other algorithms [10], [11] that
use additional RGB cameras to develop a hybrid solution for
recovering unknown depth values of Kinect depth maps. Using

Fig. 1. Depth refinement results; (a) color image, (b) original depth, (c)
cross-modal stereo result [4], (d) proposed algorithm result.

additional RGB cameras and sensors are not practical for many
applications therefore we prefer to build a hybrid setup that is
based on cameras and sensors of the Kinect only.

In this work, we propose a fully-connected CRF-based
solution which is using cross-modal stereo and Kinect’s depth
measurements for dense depth recovery of transparent objects.
The cross-modal stereo is a simple block matching approach
that is applied on filtered IR and RGB images as in [4]. The
fully-connected CRF model combines the information of stereo
matching and Kinect’s depth measurements with smoothness
prior to recover unknown depth of the Kinect’s depth map.
Our algorithm can recover the depth of transparent objects
as well as the depth of specular and absorbing surfaces. The
resulting depth map can be used for accurate 3D reconstruction
of challenging surfaces.

Our approach comprises two different stages that will be
discussed in Section 2. Quantitative comparisons will be done
in Section 3 and we draw our conclusions in Section 4.

II. MRF-BASED HYBRID DEPTH MAP REFINEMENT

Our algorithm consists of two main steps: (1) cross-modal
stereo between rectified IR and RGB images of Kinect, (2)



Fig. 2. Kinect: the distance between IR transmitter and receiver is 7.5 cm,
the distance between RGB and IR receiver is 2.5 cm approximately.

CRF-based energy formulation and minimization. The first step
produces stereo depth cues on transparent surfaces. The accu-
racy of stereo depth is not enough for dense depth estimations
on these surfaces as mentioned in [2], [4] and shown in Fig. 3.
The second step produces dense depth map by fusing the stereo
cues from the first step, Kinect’s depth measurements and
spatial cues in a fully-connected CRF model. These steps are
described below.

A. Cross-Modal Stereo

The Kinect provides three views: RGB view, depth view
and IR view. IR and depth views are provided by the same
camera which is not aligned with the RGB camera as depicted
in Fig. 2. Similar to Chiu et al. [4], we first rectify IR and
RGB views of the Kinect. Then we do cross-modal stereo
matching between IR and RGB images. Rather than their linear
filtering for increasing the similarity between IR and RGB,
we incorporated rank transform [12] to calculate the cost for
stereo. Rank transform is shown to be one of the most robust
measures for stereo matching in terms of radiometric differ-
ences between stereo pairs [13] which increases the accuracy
of stereo matching between IR and RGB cameras of the Kinect
as depicted in Fig. 3 c-d. The erroneous estimations in Fig. 3.c
are suppressed with rank transformation therefore the resulting
stereo estimations are more accurate on challenging surfaces
such as transparent objects.

Let I(x, y) and RT (x, y) denote the intensity and rank
transform value of a pixel at (x, y) inside a local neighborhood
N(x, y), the Rank transform-based cost function at disparity
d, CRank(x, y, d), can be calculated as:

RT (x, y) = |∀(x′, y′) ∈ N(x, y); I(x′, y′) < I(x, y)| ,

CRank(x, y, d) = |RT (x, y)−RT ′(x− d, y)|. (1)

The resulting cost function is aggregated over a local patch to
suppress the noise in the cost space:

Cste(x, y, d) =
∑

∀(x′,y′)∈N(x,y)

CRank(x
′, y′, d). (2)

Even though Rank transform is robust against radiometric
differences between two different sensors, the cost space com-
prises erroneous measures similar to ordinary stereo matching
between RGB images. In order to suppress such errors, we
incorporate a stereo confidence metric that is known as unique-
ness ratio. Let c1(x, y) and c2(x, y) denote the minimum cost
and second minimum cost for pixel at (x, y), respectively. In

Fig. 3. Stereo matching results; (a) color image, (b) original depth, (c) stereo
result using the filter proposed in [4], (d) stereo result using rank transform.
Some of the erroneous estimations of [4] are indicated with blue.

order to find the matches with high confidence, the ratio of the
cost values should satisfy Eq. 3:

µc(x, y) =

{
1, c2(x,y)−c1(x,y)

c1(x,y)
≥ τu

0, otherwise,
(3)

where τu is the uniqueness threshold. As depicted in Fig.3.c
and d, our stereo result has fewer erroneous depth estimations
compared to the result of [2]. However, our result is also
sparse on transparent surfaces as as indicated with red boxes
in Fig. 3. Additionally, the stereo estimations are not precise
at the depth discontinuities which are the pixels around the red
boundaries. In the second step of our algorithm, we proposed
a fully-connected CRF based global energy minimization for
fusing the stereo and Kinect depth estimations with piecewise
smoothness prior to extend our sparse estimations into a dense
depth representation of the scene with transparent objects.

B. Fully-Connected CRF Energy Model

Similar to multi-class image segmentation, estimating dis-
parity of every pixels in an image can be formulated as
maximum a posteriori (MAP) inference in a CRF and solved
using highly efficient approximate inference algorithm.

In this paper, we formulated the energy of the CRF such
that we fuse cross-modal stereo’s and Kinect’s estimations
and incorporate global smoothness priors in a fully-connected
model. A Fully-connected graph structure is preferred over
4 or 8-connected local grid structure since local inference
usually over-smooths the edges (depth-discontinuities). Fig. 4
depicts the results for the 4-connected MRF [14] and our fully-
connected CRF model where the borders of transparent objects
are indicated in red. Both algorithms can produce dense depth
estimations of the transparent objects. However, since cross-
modal stereo and Kinect estimations are lacking precision at
the discontinuities, 4-connected structure is not adequate to
have accurate estimations at the transparent object borders.
In contrast, fully-connected CRF enhance the quality using
additional information from far-away pixels.

A fully-connected structure is computationally expen-
sive compared to a locally connected structure. Recently,



Fig. 4. The accuracy near depth discontinuities (encircled by red) of 4-
connected MRF and fully-connected CRF: (a) Color image, (b) raw depth, (c)
4-connected MRF [14], (d) fully-connected CRF.

Krähenbühl et al. [15] proposed to use a linear combination
of Gaussian kernels to approximate pairwise interactions in a
fully-connected CRF model. The proposed algorithm provides
accurate results with faster convergence compared to ordinary
inference models.

The general energy function to minimize is composed of a
unary, Eu, and a pairwise, Ep, terms. Let xixixi denote the label
for the pixel (xi, yi), the energy function of the CRF is defined
as:

E(xxx) =
∑
∀i

Eu(xxxi) +
∑
∀i<j

Ep(xxxi,xxxj). (4)

The unary term is composed of stereo and Kinect estima-
tions:

Cs(x, y, d) =

{
Cste(x, y, d), µc(x, y) = 1

τste ∗ Cste(x, y, d), otherwise (5)

Ck(x, y, d) =

{
0, |D(x, y)− d| < 1
τkin, otherwise, (6)

Eu(xxxi) = Cs(xi, yi, di) + Ck(xi, yi, di), (7)

where D(x, y) is the disparity measurement of the Kinect.
The maximum disparity between IR and RGB cameras of the
Kinect is 16 pixels because of the short distance between
sensors as depicted in Fig. 2. In order to decrease quantization
errors, the disparity cost for 16 disparities are interpolated to
256 using lowpass interpolation as depicted in Fig. 5. The cost
of stereo estimations that have sufficient confidence defined
by Eq. 3, are incorporated directly as unary energy. If the
confidence of stereo is low, the stereo cost is penalized with
τste. The locations where Kinect has depth measurement, we
convert and quantize the depth of Kinect to disparity of stereo
for the new range of 256. The estimations that are not close
to Kinect measurements are penalized with τkin.

Fig. 5. Interpolation example; (a) the disparity range of 16 and unary energy
before interpolation , (b) the disparity range of 256 and unary energy after
interpolation

Similar to the model in [15], we use a Potts model
that incorporates color similarity and spatial distance in our
pairwise connections. Let pi and Ii denote the spatial location
and color of the ith pixel respectively:

µp(xxxi,xxxj) =

{
1, xxxi 6= xxxj
0, otherwise, (8)

Ep1 = exp(−|pi − pj |
2

2θ2s
− |Ii − Ij |

2

2θ2c
), (9)

Ep2 = exp(−|pi − pj |
2

2θ2a
), (10)

Ep(xxxi,xxxj) = µp(xxxi,xxxj)(w1Ep1 + w2Ep2), (11)

where the similarities are controlled by θs, θc, w1 and w2

respectively. µp(xixixi,xjxjxj) denotes the Potts term for the energy
function differences in labels between pairs that penalizes. Ep1

in Eq. 9 denotes a bilateral function for the pairwise term in
which color similarity and spatial distance between the pixels
are considered with exponential terms for the inference. Ep2

in Eq. 10 is the Gaussian smoothing prior that penalizes closer
pairs of pixels that share different labels more strongly. w1 and
w2 are the weighting parameters for Ep1 and Ep2, respectively.

III. EXPERIMENTS

We conduct several experiments to measure the perfor-
mance of our algorithm. In our first experiment, we created six
scenes with transparent objects that are not visible in Kinect’s
depth maps. The RGB and raw depth images of all of the
created scenes are shown in Fig. 6.a-b. In each scene, there
are various challenging objects with transparent, absorbing,
specular surfaces and there are occlusion problems that occur
because of the distance between IR transmitter and the receiver
of Kinect as shown in Fig. 2.

As the first experiment, we present 3D reconstruction
reconstruction performances of cross-modal stereo [2] and our
algorithm in Fig. 7 a and b, respectively. The quality of the
depth map has a direct influence on the quality of 3D recon-
structions. Since the results of cross-modal stereo [2] contains
erroneous and unknown depth values, the 3D reconstruction
of the scene includes wrong voxels in 3D space as depicted
in Fig. 7. In contrast, highly accurate dense depth estimations
of such challenging objects with our algorithm increases the



TABLE I. PERCENTAGE OF ERRONEOUS DISPARITY VALUES OF PROPOSED ALGORITHM WITH TOP PERFORMING ALGORITHMS.

Tsukuba Venus Teddy Cones
nonocc all disc nonocc all disc nonocc all disc nonocc all disc

Base 29.6 31.2 39.9 24.2 25.5 36 23.8 31.7 41.5 12.6 22.6 31.2
Stereo + Inpainting 11.5 13.2 26.5 7.39 8.75 26.7 13.3 21.8 30.0 7.01 16.2 19.1

Stereo + MRF 6.08 7.65 22.7 1.85 3.15 19.6 10.1 16.9 27.0 6.49 14.2 18.4
Proposed 2.98 3.28 13.5 1.35 1.78 6.8 10.6 17.2 25.2 7.27 13 16.5

Fig. 6. Refined depth maps; (a) color images, (b) original depth images, (c) our cross modal stereo (CMS) results with Rank transform, (d) CMS + inpainting
results, (e) CMS + MRF results, (f) our algorithm results.

accuracy of 3D reconstruction significantly as depicted in
Fig.7.b.

An alternative solution to obtain dense estimations on
transparent objects might be combining cross-modal stereo
with a bilateral filtering-based inpainting algorithm [5] or using
similar energy functions as ours in 4-connected MRF graph
structure. In our next experiment, we compare the performance
of our algorithm with cross-modal stereo fused with MRF [14]
and inpainting [5] as depicted in Fig. 6 f-d respectively.
Different from inpainting, our algorithm and MRF can correct
errors of the Kinect and cross-modal stereo rather than only
estimating the unknown pixels. Furthermore, our algorithm

provides the most precise object boundaries as depicted in
challenging object boundaries for every images in Fig. 6.f.
Both bilateral filtering and MRF failed to preserve sharp depth
discontinuities because of their vulnerability to cross-modal
stereo’s and Kinect’s imprecision at those locations as already
discussed in Section 2.

Many of the Kinect inpainting algorithms have been tested
using ground truth depth map and stereo images of Middle-
burry dataset [3], [6], [16]. In order to test the performance of
our algorithm, we also used Middleburry dataset and compare
the performance of our algorithm with inpainting and MRF
approaches. To have a fair comparison, we only use stereo



Fig. 7. 3D Point cloud reconstructions for; (a) cross-modal stereo [2](b) our
algorithm.

and spatial cues in all of the three algorithms. We discard
erroneous disparities using Eq. 3 for the inpainting algorithm.
The resulting accuracies of the algorithms are given in Table I.
We checked the appearance of errors in different locations
of the image such as non-occlusion (nonocc), all pixels (all)
and locations close to disparity discontinuities (disc). The best
results for different image regions are depicted in bold. In
almost all of the challenging regions in all dataset images, our
algorithm outperforms other algorithms with significant differ-
ence. Bilateral filtering with cross-modal stereo is the worst
performer since bilateral filter has local inference and it does
not incorporate the informative stereo cues from the matching
cost of Eq. 1. The 4-connected local grid structure with MRF
performs better than bilateral filtering but it is worse than our
algorithm because of its insufficient local inference compared
to fully-connected CRF. The results near depth discontinuity
regions indicated with disc shows the significant improvement
that is gained with our fully-connected CRF model over other
algorithms. Fig. 9 show the results on Middleburry dataset. The
accuracy of our algorithm is much higher than the accuracy
of 4-connected MRF and inpainting especially at disparity
discontinuities and homogeneous regions.

As the final experiment, we covered transparent objects
in one of our images so that we observe the ground truth
depth from Kinect measurements. We calculate the relative
depth error as percentage by using Eq. 12. This experiment
aims to calculate the accuracy inside the object rather than the
performance at the borders. The results for cross-modal stereo
(stereo), and our cross-modal stereo with bilateral filtering
(Inp), MRF and our algorithm are given in Table II. Our
algorithm outperforms other algorithms with approximately 5
percent error. The reason of having this error is mainly because
of short distance between IR and RGB sensors of Kinect.
Since the distance is short, cross-modal stereo fail to measure
accurate depth estimations on low-textured regions especially
for far-away objects.

The main reason for the sparsity of cross-modal stereo be-
tween IR and RGB sensors of the Kinect was mentioned to be
the structural difference between IR and RGB data. However,
the dense estimations can be obtained by incorporating spatial
inference with global CRF as we showed in our experiments.
However, we observe that the distance between the IR and
RGB sensors of the Kinect limits the depth estimation range
significantly.

In stereo vision, the distance between the cameras (base-
line) affects the range of the disparity estimation. The cameras
should be close to increase the overlap between the views in

Fig. 8. Cross-modal stereo range. The maximum observable depth is bounded
between 0− 1.62 meters.

order to match sufficient amount of pixels for dense estimation.
In contrast, the cameras should also be far from each other
in order to estimate the depth of far-away objects. As an
example the baseline between the eyes of a human (interocular
distance) is about 6.3 cm. The baseline between Kinect sensors
is around 2.5 cm. The main limitation of the cross-modal stereo
is the insufficient distance between IR and RGB sensors of the
Kinect for estimating the depth of long distance objects. As
depicted in Fig. 2, the distance between IR receiver and RGB
camera of the Kinect is about 2.5 cm which is not enough
to estimate the depth of far-away objects. Fig. 8 depicts the
range limits that we observed in our experiments. Since IR and
RGB sensors are close, the maximum observable depth with
cross-modal stereo is limited to 1.62 meters approximately.

TABLE II. RELATIVE DEPTH ESTIMATION RESULTS (PERCENT)

Stereo [2] Inp MRF Our Algorithm
Transparent 75.3 7.6 8.0 5.9

Er =
∑

∀(x,y)∈R

|dp(x, y)− d(x, y)|
|R|d(x, y)

, (12)

IV. CONCLUSION

In this paper, we proposed fully-connected CRF based
hybrid Kinect refinement algorithm that achieves high accuracy
depth estimations on any kind of challenging surfaces in a
scene. Different from state-of-the-art algorithms, our algo-
rithm provides dense depth estimations on transparent objects
as well as precise accuracy near depth discontinuities. The
improved depth maps can be used to perform accurate 3D
depth reconstruction and depth-guided segmentation of the
scenes. Further accuracy improvements can be achieved using
additional pairwise priors and more accurate stereo matching
algorithms. The main limitation of stereo matching between
IR and RGB cameras in Kinect is the short baseline distance
between the sensors.



Fig. 9. Middleburry image results: (a) color image, (b) ground truth depth, (c) raw stereo matching results with filtered disparities, (d) inpainting, (e) 4-connected
MRF, (f) fully-connected CRF refinement respectively.
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