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Since the introduction of LLE (Roweis and Saul, 2000)
and Isomap (Tenenbaum et al., 2000), a large num-
ber of non-linear dimensionality reduction techniques
(manifold learners) have been proposed. Many of these
non-linear techniques can be viewed as instantiations
of Kernel PCA; they employ a cleverly designed ker-
nel matrix1 that preserves local data structure in the
“feature space” (Bengio et al., 2004). The kernel ma-
trices of the first manifold learners were handcrafted:
for instance, LLE uses an inverse squared graph Lapla-
cian of the reconstruction weight matrix as kernel ma-
trix, Isomap uses a centered geodesic distance matrix,
and Laplacian Eigenmaps uses an inverse neighbor-
hood graph Laplacian (Belkin and Niyogi, 2002).

More recently, several techniques have been proposed
that, instead of designing the kernel matrix by hand,
try to learn a good kernel matrix from the data (Wein-
berger and Saul, 2009; Shaw and Jebara, 2009). In
particular, these techniques impose linear constraints
on the kernel matrix K that are designed to preserve
local data structure in the feature space; the tech-
niques optimize an objective function that approxi-
mately minimizes the rank of the kernel matrix subject
to these constraints. The (approximate) rank mini-
mization is required because we wish to obtain a com-
pact data representation. The main differences be-
tween “kernel-learning” dimensionality reduction tech-
niques are in the way the approximate rank constraint
is implemented: for instance, Maximum Variance Un-
folding (MVU) maximizes the variance of the embed-
ding (Weinberger and Saul, 2009), whereas Structure
Preserving Embedding maximizes the similarity be-
tween the eigenvectors of the kernel matrix and those
of the data adjacency matrix (Shaw and Jebara, 2009).

Maximum Entropy Unfolding (MEU; Lawrence
(2011)) fits in the group of kernel-learning dimension-
ality reduction techniques. In particular, MEU uses

1The kernel function κ(yi,yj) typically uses other data
points yk (with k 6= i, j) as parameters, which leads to
kernel matrices that are not Mercer but still Gramian.

exactly the same linear constraints as MVU to pre-
serve small pairwise distances in the feature space.
The main novelty in MEU is that the approximate
rank constraint is implemented by developing a prob-
abilistic interpretation of dimensionality reduction:
Lawrence (2011) uses the principle of maximum en-
tropy (Jaynes, 1986) to develop a distribution p(Y)
over the data set Y ∈ RN×D, and obtains the low-
dimensional data representation through an SVD of
the inverse covariance (i.e., kernel) matrix of p(Y).
The entropy maximization2 is performed subject to
a set of distance preservation constraints (the same
constraints are also used in MVU). The distribution
p(Y) then takes the form of a Gaussian Random Field
(GRF) in which each data point corresponds to a node:
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Herein, L is the Laplacian of the matrix of Lagrange
multipliers Λ that correspond to the distance preser-
vation constraints; γ is a hyperparameter. The em-
bedding X ∈ RN×d is formed by the d principal eigen-
vectors of the kernel matrix K = (L + γI)−1.

Below, we discuss the potential impact of MEU on our
understanding of: (1) the connections between mani-
fold learning and generative modeling, (2) the curses
and blessings of dimensionality, and (3) the way in
which manifold learners obtain low-rank solutions.

Manifold learning versus generative modeling.
The paper by Lawrence (2011) mainly focuses on
the connections between MEU and existing manifold
learners such as Isomap and LLE; it presents new con-
nections between manifold learners that go beyond
those discussed by Bengio et al. (2004). A connec-
tion that remains underexposed is that between MEU
and the non-linear probabilistic PCA model known
as GPLVM (Lawrence, 2005). Both MEU and the

2The entropy maximization is performed relative to a
Gaussian base distribution to prevent p(Y) from blowing
up in unconstrained directions.
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Table 1: Four dimension reduction approaches.

– Non-generative model Generative model

Global struct. PCA, Autoenc. pPCA, GPLVM

Local struct. Isomap, LLE, MVU MEU

GPLVM model the distribution p(Y) as a GRF, but
the covariance K of the two models is learned differ-
ently: in the GPLVM, the embedding X is learned di-
rectly and K = XXT ; whereas in MEU, the Lagrange
multipliers Λ are learned and K = (L + γI)−1.

The connection between MEU and the GPLVM is par-
ticularly interesting as it shows that MEU provides
a unifying framework for two seemingly very differ-
ent approaches: (1) manifold learning using techniques
like Isomap and LLE and (2) generative modeling us-
ing models like probabilistic PCA and the GPLVM.
Manifold learners learn a smooth mapping from the
data space to the embedding space. A smooth map-
ping in this direction preserves mainly local data struc-
ture: if similar data points would be modeled far apart
in the embedding, a non-smooth mapping from the
data space to the embedding space would be required.
By contrast, generative models aim to learn a smooth
mapping from the embedding space to the data space.
A smooth mapping in this direction preserves mainly
global data structure: if dissimilar points are close to-
gether in the embedding, the mapping from the em-
bedding to the data space needs to be non-smooth.

MEU is the first technique that combines generative
modeling with the preservation of local data structure
(see Table 1). As a result, MEU can be used to obtain
new insights in the ongoing discussion on whether it is
better to preserve local data structure or to preserve
global data structure. For instance, future work may
compare the log-likelihood of test data3 under both a
MEU and a GPLVM model in an attempt to inves-
tigate whether it is better to preserve local or global
data structure (or a combination of the two).

An oddity of the MEU generative model is that it
(unlike the GPLVM) does not treat the embedding
X as latent variables. Instead, the embedding is con-
structed by performing an arbitrary MDS algorithm on
the inverse covariance of the GRF. So far, it is unclear
whether this peculiarity can be somehow eliminated.

Blessing of dimensionality. An interesting charac-
teristic of MEU is that the quality of the parameter
estimates tends to improve with the dimensionality of
the data: that is, MEU benefits from a blessing of di-

3A notable problem here is that both MEU and the
GPLVM do not provide a way to compute the exact log-
likelihoods of test data.

mensionality (Lawrence, 2011). In essence, MEU ben-
efits from additional dimensions because they may pro-
vide additional information that can help to reduce the
variance of the parameter estimates. The blessing of
dimensionality appears to contradict the famous curse
of dimensionality (Bellman, 1961); but this is mainly
because the curse of dimensionality is often misinter-
preted. The curse of dimensionality refers to problem-
atic phenomenons such as concentration of distances
in high-dimensional spaces, which do occur when the
features are independent, but are largely absent when
the features are correlated (Szekely et al., 2011). The
extent to which such phenomena surface mainly de-
pends on the number of underlying parameters of the
data, and often, it is thus better to speak of the curse
of intrinsic dimensionality.

Like any other learner, MEU does suffer from the curse
of intrinsic dimensionality: identifying 300 underly-
ing parameters is undoubtedly harder than identifying
3 underlying parameters (it leads to higher-rank ker-
nels). Redundancies in the dimensions, however, can
increase the quality of the parameter estimates, e.g.,
because one dimension may correct for noise in another
dimension. It is important to note that such blessings
of dimensionality are not specific to MEU: all learners
in which the number of parameters does not increase
with the number of dimensions may benefit from it
(Donoho, 2000). MEU nicely highlights the blessing
of dimensionality of these learners.

Rank minimization. A notable difference between
MVU and MEU is that maximizing entropy appears
to be a looser rank minimization technique than max-
imizing variance. Maximizing variance (like in MVU)
is identical to minimizing the sum of the eigenvalues,
whereas maximizing entropy (like in MEU) is similar
to maximizing the sum of the log-eigenvalues: maxi-
mizing entropy thus heavily penalizes solutions that
give rise to infinitesimal eigenvalues. It is yet un-
clear which of the two approaches is better, but re-
sults from other studies suggest that different ways
of dealing with dissimilar points can produce very
different results. For instance, a study by Carreira-
Perpiñán (2010) on the similarities between Stochas-
tic Neighbor Embedding (SNE; Hinton and Roweis
(2003)) and Laplacian Eigenmaps suggests that how
dissimilar points are pushed apart is much more im-
portant than how similar points are pulled together.
In particular, Laplacian Eigenmaps tends to collapse
points and SNE does not, whilst the only difference
between the two is in how they deal with dissimilar
points. So far, good results have been obtained by
pushing dissimilar data far away (van der Maaten and
Hinton, 2008; Weinberger and Saul, 2009), but perhaps
MEU can provide new ideas on this.
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